Superconvergence of the numerical traces of discontinuous Galerkin and Hybridized methods for convection-diffusion problems in one space dimension
نویسندگان
چکیده
In this paper, we uncover and study a new superconvergence property of a large class of finite element methods for one-dimensional convectiondiffusion problems. This class includes discontinuous Galerkin methods defined in terms of numerical traces, discontinuous Petrov–Galerkin methods and hybridized mixed methods. We prove that the so-called numerical traces of both variables superconverge at all the nodes of the mesh, provided that the traces are conservative, that is, provided they are single-valued. In particular, for a local discontinuous Galerkin method, we show that the superconvergence is order 2 p + 1 when polynomials of degree at most p are used. Extensive numerical results verifying our theoretical results are displayed.
منابع مشابه
Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension
In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alterna...
متن کاملAnalysis of optimal error estimates and superconvergence of the discontinuous Galerkin method for convection-diffusion problems in one space dimension
In this paper, we study the convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a linear convection-diffusion problem in one-dimensional setting. We prove that the DG solution and its derivative exhibit optimal O(h) and O(h) convergence rates in the L-norm, respectively, when p-degree piecewise polynomials with p ≥ 1 are used. We further prove that the p-de...
متن کاملOptimal a Posteriori Error Estimates of the Local Discontinuous Galerkin Method for Convection- Diffusion Problems in One Space Dimension
In this paper, we derive optimal order a posteriori error estimates for the local discontinuous Galerkin (LDG) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconvergence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial deri...
متن کاملA Numerical Study of Uniform Superconvergence of Ldg Method for Solving Singularly Perturbed Problems
In this paper, we consider the local discontinuous Galerkin method (LDG) for solving singularly perturbed convection-diffusion problems in oneand two-dimensional settings. The existence and uniqueness of the LDG solutions are verified. Numerical experiments demonstrate that it seems impossible to obtain uniform superconvergence for numerical fluxes under uniform meshes. Thanks to the implementa...
متن کاملSuperconvergence of Discontinuous Finite Element Solutions for Transient Convection-diffusion Problems
We present a study of the local discontinuous Galerkin method for transient convection-di usion problems in one dimension. We show that p degree piecewise polynomial discontinuous nite element solutions of convection-dominated problems are O( xp+2) superconvergent at Radau points. For di usion-dominated problems, the solution's derivative is O( xp+2) superconvergent at the roots of the derivati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 76 شماره
صفحات -
تاریخ انتشار 2007